MOTION AND HEAT TRANSFER IN TUBES OF LIQUIDS
WITH TEMPERATURE-DEPENDENT VISCOSITIES

V. I. Naidenov UDC 532.516

The problem of the velocity and temperature distribution of a liquid flowing in a cylindrical
tube in the case where the viscosity varies exponentially with temperature is considered.

1. There have been many theoretical and experimental studies of hydrodynamics and heat transfer in
a laminar flow of viscous liquids in fubes [1]. A problem of great practical interest is that of the motion of
a viscous liquid in nonisothermal conditions, where the solution entails great difficulties of an analytical
nature.

A flow with variable viscosity was investigated in [2] for a problem similar to the Graetz —Nusselt
problem. In [2] the inertial and convective terms in the equations of motion and energy were only partially
taken into account by averaging over the thickness of the thermal boundary layer. In this case, however,
the analytical integration of the equations could be effected only by methods of numerical analysis, and the
obtained results were valid only in the region of small reduced lengths. A solution suitable for the whole
heat transfer region was obtained by the Karman—Pohlhausen integral method in [3]. In [4] heat transfer
and resistance in a flow of gas with temperature-dependent properties were calculated by a finite-differ-

ice method and some interpolation formulas, predicting the results of calculation to within 3%, were pro~
posed. In this case the system of differential equations of motion, continuity, and energy were investigated
in the boundary-layer approximation.

The problem of heat transfer and hydraulic resistance of a viscous incompressible liquid in the re-
gion of stabilized heat transfer in the case of boundary conditions of the second kind was investigated in [5].

We can also mention the interesting investigations of some thermodynamic problems [6, 7] which led
to the discovery of the hydrodynamic thermal explosion. Similar results indicating the existence of a cri-
tical combination of parameters at which a steady flow is impossible can evidently be expected in the theory
of convective heat transfer with variable physical properties.

In the present paper we investigate the heat transfer and hydraulic resistance of a viscous incom-
pressible liquid in a round tube in the case of boundary conditions of the second kind. We will agssume that
hydrodynamic and thermal processes are steady, and that the viscosity varies with temperature in accord-
ance with the interpolation equation

p= poexp(— B (T — Tyl (1.1)

Here g is the viscosity of the liquid on entry into the heat-transfer section, and 3 is a parameter
which depends on the kind of liquid and the temperature range.

If the temperature gradients are small, formula (1.1) gives a statisfactory agreement with experi-
mental data. The equations of motion and heat transfer in the case of constant thermal diffusivity and
straight-line particle trajectories have the form [8]

dp 3 dv P dv Op o dv aT
{n“m(l“d >+r_ o o g W =voie (1.2)
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We will assume that the tube wall i8 maintained at a temperature which depends linearly on x

T (x, 1) = Az (1.3)
Here r; is the tube radius, and x is the longitudinal coordinate.

In the case of steady heat processes relationghip (1.3) is identical to the assumption of constancy of
the specific heat flux through the tube wall if p and cp are constant over the cross section and length of the
tube.

We introduce the dimensionless quantities

X =a/rg, R=riry, 8 = Tldr,, V = viu,

P = pro/uoisy, Pe = ugro/a, o = pAr, (1.4)
Here u, is the average flow velocity.
We assume that the temperature distribution is self-similar relative to coordinate X, i.e.,
6(R. X)=X +8(R) (1.5)

In view of assumption (1.5) we obtain a dimengionless system of ordinary differential equations for
the functions (R) and V(R)

d , gz L\ v 40 &V
d—R-AV~;-[“2(d1&’ _1}_“P°V]W_2°’"&T'd_ﬂ2'=0 (1.6)
A = PeV

The boundary conditions and conditions for constant flow rate have the usual form

1
V)y=0, 6(1)=0, S]W(R)d[f:l/2 (0.7)
[

Relationships (1.6) and (1.7) are the mathematical formulation of the problem.

We formally seek the solution of Egs. (1.6) in the form of a series of powers of the parameter «

V(R,a)= X o'V, (R), O(R,a)= D a8y (R)
k=0 k=0

1.8)
To determine the k-th approximation we obtain a system of linear differential equations
(d/dR) AV = Fy (8,61, - - - ,8k-1, Vo Viy o o -4 Vi-d)s Af, = Pely
k—2 k-2 -1
do_, do, dv, av av, a8, 4, 1.9
Fi=— 2 E(T;r" R 'dR"—'dR’)"'z (PeVm aR T 2R dR2> (-9
m=g n=-0 m=0
When the expansions (1.8) are taken into account conditions (1.7) take the form
Ve(1) = 0,0, (1) =0, k~=0,1,2,...
! (1.10)

. 1
SHVO(H)dR=1/2, SRV,‘(R)zo, k—=1,2,...
[}

0

Thus, to solve the problem we use the method of successive approximations. Asg the zero approxima-
tion we take the functions [1]

Vo (R) = 2(1 — R?), 8, (R) = — 1/8 Pe (3 — 4 R -+ RY) (1.11)

Using the method of variation of constants we can easily obtain a general solution of the system of
Egs. (1.9)
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b4 g v
Ve®) =\ \n\Fum)dy + A0+ B,
0 0 0
R E (1.12)
0 (B) = Pe [\ L\ oy o
e (B) = Pel\ =\ Vi (ydn - C,|
I
The arbitrary constants Ay, Bk, and Ck are determined from relationships (1.10)
1
Ap= 4§1{Xk(1?) dR —2X, (1)
L)
1‘
By = — 4§RX,‘ (RYdR + X, (1) (1.13)

1%

Cx = —-STS’]Vk (mdn
0 0

-

where Xk(R) is a particular solution of the first equation in (1.9).

2. We assume that functions (Vy, 8), (Vy, 0g), (Vy, 65),.0+, (Vk_1» Ok~y) have no singularities in the
considered flow region. The analyticity of the k-th approximation then follows from Eg. (1.12). Since the
zero pair of functions (1.11) is analytical in the region (0 =R =1), then approximations of any order and their
derivatives will possess this property.

We turn now to the proof of uniform convergence of V(R, ) and 6(R, o) and their derivatives in the
range 0 s =q*.

We introduce a positive number Mg, such that
max | Fy (R) | <My Q<R <) 2.1)

The introduction of Mk is always possible since we are dealing with functions which are continuous in
a closed interval. From relationships (1.12) and (1.13) we obtain estimates for functions 6. (R) and Vk(R)
and their derivatives to the first and second order inclusive
[ Ve (R) | << 8/9 My, |0x (R)] << 4/9 My 'Pe

| dVidR | < 11/9M, | dBg/dR(R) | <4/9 M(Pe, | d?V,/dR* (R) | < 2049 A1, (2.2)
Denoting by h the largest of the numbers (20/9, 4/9 Pe) we construct the series

W (a) = X} Wiak, Wy = kM, (2.3)

k=0

By o here we mean the modulus of this quantity.

If the convergence of function W(a) is proved, then the uniform convergence of expansions (1.8) and
their derivatives in the region 0 =R =1 will follow from incqualities (2.2).

As still undetermined values of My we take the numbers

k--2 k—2 k-1
My=Wyh =) 2 WWWWw)+ X (Pel2)WW, 2.4)
m=0 n=g,min-ti-=k—a M=0,m+= k—)
‘If each term of series (2.3) apart from the zero term is replaced by its expression (2.4) we obtain
the majorant equation
o(W,a)=®W*+aPe+2) W2 4- (a2 —~1/h) W W,/ h =0 (2.5)
where W is the largest number exceeding the maxima of functions Vy(R) and 6;(R) and their derivatives.

Since the coefficients of W(a) are rational functions of o, then W(w) is an algebraic function and in the
vicinity of a special point (@ = 0) has at least one regular convergence branch. The nearest special point
(radius of convergence) is determined after elimination of W from the system of equations
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@ (W, a*) =0, dp / oW (W, o *) = 0 (2.6)

In the vicinity of zero value of the parameter 0 = <& we can replace Eq. (2.5) by the simpler equa-
tion

a(Pe 4 2) W2 — h~1W 4 R-'W, = 0 2.7)
In this case the radius of convergence is given by the root of the discriminant equation
a* = [4hW, (Pe + 2)1- (2.8)

I, for instance, Pe = 1, then h = 20/9, W; =4, and o* = 0.01.

It is obvious that if more accurate estimates are made in inequalities (2.2) the value of o* may be
greater.

3. 'To determine the first approximation we have the system of equations

Vo dby, d,

% T 2ar g Ah=Pel, (3.1)

& AV,=PeV,
The solution of this system, which has no singularities at R = 0, is

Vi (R) = Yoy Pe (2R® — 12R* + 13R* — 3)

0, (R) = YagaPe? (3R® — 32R® + T8R* — T2R? 4 23), @-2)
On the basis of two approximations we can put the axial flow velocity in the form
V(R, o, Pe) = 2 (1 — R? + Yy o Pe (2R® — 12R* + 13R% — 3) 3.3)

Analyzing Eq. (3.3) we can draw the following conclusions. When ¢ > 0 (the walls heat the liquid) the
velocity on the tube axis decreases, and in the vicinity of the walls increases in comparison with the para-
bolic flow regime, so that a fuller velocity profile is obtained. When o< 0 (the walls are colder than the
liquid) the flow picture will be the opposite, and the velocity profile assumes the characteristic extended
form. These effects are enhanced when the product oPe increagses. These conclusions are in good agree-
ment with the experimental data obtained for water and MS-20 oils [1].

The temperature gradient at the tube wall for all values of X is given by the relation

d0/dR = Pe/2 (3.4)

since

de, p
dR R=1= €

RV((R)dR=0, k>1

Do

For the mean temperature over the cross section we obtain

1
0,=2{6(R)V (R RIR = — 7L Pe + 27¢ (3-5)
]

Thus, for the Nusselt number referred to the tube diameter we have the equation

Nu-l = 6, [— 2d6 / dR]-! = 11/48 — aPe / 128 (3.6)

It follows from Eg. (3.6) that when o> 0, the Nusselt number and, hence, the heat transfer coefficient
increase in comparison with the limiting value Nu = 4.364. When o <0 the Nusselt number and the heat
transfer coefficient will be reduced.

For the hydraulic resistance coefficient we have
A=l tmax | /2 pUs® = | 8/ Re + */g aPr | e2X
Here Tyax is the friction stress on the tube walls and p is the density of the liquid, Re = Uyrop/u, is

the Reynolds number, Pr = u,/pa is the Prandtl number.
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When o <0 the resistance coefficient increases rapidly with increase in length X.

We note an interesting point. If the parameter o <<1, then in system (1.6) the term c?dV/dR can be
neglected in comparison with the rest. Then the required V, 6/Pe, and Nu will be functions of the single
criterion aPe

V =f, (R, aPe), 0 = Pef, (R, aPe), Nu = f, (aPe) 3.7

An experimental verification of the last equation in (3.7) is of interest.

A calculation of the subsequent approximations presents no difficulty, since the right hand sides of
Egs. (1.9) for any k are polynomials and, hence, for each approximation we can obtain an exact situation.

The question of the cxistence and uniqueness of the solution of the system of Egs. (1.6) for ¢ > a* re-
mains open.
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